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We study the influence of group-velocity dispersion �or diffraction� on the coherence properties of the
parametric three-wave interaction driven from an incoherent pump wave. We show that, under certain condi-
tions, the incoherent pump may efficiently amplify a signal wave with a high degree of coherence, in contrast
with the usual kinetic description of the incoherent three-wave interaction. The group-velocity dispersion is
shown to be responsible for a spectral filtering process, in which the coherence of the generated signal
increases, as the coherence of the pump wave decreases. As a result, the coherence acquired by the signal in the
presence of an incoherent pump, is higher than that acquired in the presence of a fully coherent pump. The
mechanism underlying this intriguing result is based on the emergence of a mutual coherence between the
incoherent pump and the generated idler wave. We calculate explicitly the degree of mutual coherence between
the pump and idler waves and show that the two incoherent waves become completely correlated in the full
incoherent regime of interaction. The theory is in quantitative agreement with the numerical simulations. To
motivate the experimental confirmation of our theory, we characterize the dispersion properties of an actual
quadratic nonlinear optical crystal in which the process of signal coherence enhancement induced by pump
incoherence may be studied experimentally.
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I. INTRODUCTION

Resonant wave interactions take place in any dispersive
and weakly nonlinear medium whose lowest order is qua-
dratic or cubic in terms of the waves amplitudes �1,2�. For
this reason they play a fundamental role in physics and are
thus found in such diverse fields as hydrodynamics �3�, non-
linear acoustics �4�, plasma �5–7�, nonlinear optics �8–10�,
and matter waves �11�.

In the present work we consider the parametric three-
wave interaction, which is among the most largely studied
configuration of resonant wave interactions. It refers to a
parametric amplification process where energy is transferred
from a high frequency wave �pump� towards two waves of
lower frequencies, which are usually called the signal and the
idler waves in the context of nonlinear optics. From the the-
oretical point of view, two alternative approaches are usually
employed to describe the three-wave parametric interaction
�5–7,12,13�. On the one hand, when the time correlation �c
of the pump wave is much larger than the characteristic time
�0 of nonlinear interaction, i.e., �c��0, one usually finds the
coherent phase approximation. In this coherent regime of
interaction the relation between the phases of the three waves
is significant to the description of their interaction. The equa-
tions governing this coherent evolution of the fields have
been studied in various physical contexts. In particular, soli-
ton solutions have been identified in the presence of convec-
tion �group-velocity difference� �14,15�, or dispersion
�group-velocity dispersion� �9,10,16,17�. On the other hand,
when the time correlation of the pump wave becomes much
smaller than the nonlinear interaction time, �c��0, one usu-
ally applies the random phase approximation. In this ap-
proach, the three waves are implicitly assumed to be inco-
herent, so that their relative phases are no longer significant
to their interaction. Phase information is thus averaged out,

to obtain a weak-turbulence description of the interaction in
terms of irreversible kinetic equations. This kinetic approach
of the three-wave interaction has been widely investigated in
plasma physics, especially as regards the important issue of
inertial confinement fusion �18�.

The coherent and incoherent regimes of three-wave inter-
action are commonly considered as being well distinct. This
has been confirmed in a recent work, where the transition
between the two regimes is shown to occur suddenly as the
time correlation �c of the pump wave is varied �12�. How-
ever, this work was based on a rather simple three-wave
model that neglected the influence of dispersion on wave
propagation. Conversely, linear dispersive effects have been
shown to affect considerably the properties of coherence of
the waves during their nonlinear evolution �19–24�. In par-
ticular, the analysis of �group-velocity� dispersion on the de-
generate configuration of the three-wave interaction revealed
the existence of a peculiar condensation process �24�. It con-
sists of a sudden transition of coherence, in which the inco-
herent pump and incoherent signal waves, spontaneously
evolve towards a coherent state. During this transition, the
energy of the incoherent waves concentrates in the vicinity
of the signal and pump carrier wave frequencies. As a result,
the condensation process is characterized by a spontaneous
evolution of the system from the fully incoherent regime
��c��0� towards the coherent regime ��c��0� of interaction.

The present work is devoted to the study of this transition
of coherence in the general framework of the nondegenerate
configuration of the three-wave interaction. It is shown that,
contrary to the degenerate case where both waves evolve
towards a coherent state �24�, in the nondegenerate case the
system may evolve towards a mixed regime of interaction.
This mixed regime is characterized by the coexistence of two
incoherent waves, the pump and the idler, together with a
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coherent signal wave. More precisely, we show that the ex-
istence of the mixed regime of interaction relies on the emer-
gence of a mutual coherence between the incoherent pump
and the incoherent idler wave, so that their random phases
result to be locked with each other. In this way, the idler
wave may “absorb” the fluctuations of the incoherent pump,
which in turn allows the signal to evolve towards a highly
coherent state.

A similar mixed regime of coherent-incoherent interaction
was shown to be induced by the group-velocity difference,
i.e., convection, between the three waves �20,21�. In particu-
lar, it was shown that the convection-induced phase-locking
mechanism was responsible for the generation of incoherent
solitons �20�, that were subsequently observed experimen-
tally in cubic nonlinear media �23�. Let us mention that this
particular mixed interaction regime was also studied experi-
mentally in quadratic nonlinear media by exploiting the spe-
cific phase-matching conditions inherent to conical optical
beams �25�.

In these previous studies �19–21,23�, the phase-locking
mechanism was induced by the convection between the three
waves, whereas in the present work the phase locking is
shown to result solely from the �group-velocity� dispersion.
Actually, dispersion is responsible for a remarkable dynami-
cal feature that does not occur through convection. We show
that group-velocity dispersion leads to an intriguing spectral
filtering process, in which the coherence of the generated
signal wave increases, as the coherence of the pump wave
decreases. More precisely, the coherence acquired by the sig-
nal in the presence of an incoherent pump, is higher than that
acquired in the presence of a fully coherent pump. This
counterintuitive result is in strong contradiction with the ki-
netic theory and the random-phase approximation approach,
which are supposed to be more accurate as the incoherence
of the pump wave is increased.

To motivate the experimental confirmation of our theory,
we present our work in the context of nonlinear optics, be-
cause quadratic nonlinear media offer unique opportunities
for the experimental study of the parametric generation pro-
cess. In particular, we characterize the dispersion properties
of an actual quadratic nonlinear crystal in which the process
of signal coherence enhancement induced by pump incoher-
ence may be studied experimentally.

II. GOVERNING EQUATIONS

To describe the spatio-temporal evolution of the fields in a
quadratic nonlinear medium, we consider the usual three-
wave interaction equations in one spatial dimension. Let us
assume that the spectral width of the three interacting waves
are much smaller than their respective carrier frequencies �
�� j �� j , j=1, 2, 3 with �3=�1+�2�, so that the slowly
varying envelope approximation is justified. The coupled
partial differential equations governing the evolution of the
amplitude envelopes Aj read

i
�A1

�z
=

�H

�A1
* = − A3A2

* − �1
�2A1

�t2 − i�1
�A1

�t
, �1�

i
�A2

�z
=

�H

�A2
* = − A3A1

* − �2
�2A2

�t2 − i�2
�A2

�t
, �2�

i
�A3
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�H

�A3
* = − A1A2 − �3

�2A3

�t2 , �3�

where H=�H dt is the field Hamiltonian, and H its density.
The Hamiltonian has a linear and a nonlinear contribution
�H=HL+HNL�, whose respective densities read

HL = � i

2�
j=1

2

� jAj�tAj
* + c . c.� + �

j=1

3

� j	�tAj	2, �4�

HNL = − A1A2A3
* − A1

*A2
*A3. �5�

For definiteness we call A1 ,A2 ,A3 the signal, idler, and pump
waves, respectively. Equations �1�–�3� are written in the ref-
erence frame of the pump wave, so that the dimensionless
parameters � j = �v3−v j� /v j �j=1, 2� represent the amount of
convection between the daughter waves A1,2 and the pump
wave A3, where v j are the group velocities of the three
waves �j=1, 2, 3�. For convenience, we normalized the
problem with respect to the characteristic nonlinear length
Lnl=1/ �	e0� and time �0=Lnl /v3, where e0= 
	A3	2�1/2 is the
average amplitude of the pump, the symbol 
¯� denotes a
stochastic average over an ensemble of realizations with ran-
dom initial conditions. The nonlinear coefficient 	 is as-
sumed to be identical for the three waves. The variables can
be recovered in real units through the transformations
z→zLnl; t→ t�0 and Ai→Aie0. With these units, the dimen-
sionless dispersion coefficients read � j =kj�v3 /�0, kj�
= ��2k /��2� j being the dispersion parameter and k��� the
wave vector modulus at frequency �.

To determine the key parameters that govern the paramet-
ric amplification process, let us define the relevant character-
istic lengths of the problem. The influence of pump disper-
sion is determined by the characteristic length Ld=�c

2 / 	k3�	,
where �c is the time correlation of the pump wave. The in-
fluence of convection between the pump A3 and the daughter
waves A1,2 is characterized by the propagation lengths Lcv,j
=�c / 	1/v j −1/v3	 �j=1, 2�. Defining the dimensionless pa-
rameter 
=�0 /�c, we have

Ld

Lnl
=

1


2	�3	
, �6�

Lcv,j

Lnl
=

1


	� j	
�j = 1,2� . �7�

These relations allow us to precise the criterion for applica-
bility of the random phase approximation. When Ld /Lnl�1,
and Lcv,j /Lnl�1 �i.e., �=HNL /HL�1�, the rapid fluctuations
of the incoherent pump make linear dispersive effects domi-
nant with respect to nonlinear effects, and the random phase
approximation approach is usually applied �2�.

Let us note that Eqs. �1�–�3� also hold for the description
of purely transverse spatial evolution of the three beams.
Indeed, the substitution of dispersion with diffraction, and
convection with beam walk-off, transforms Eqs. �1�–�3� into
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the well-known equations describing purely transverse ef-
fects in quadratic nonlinear media �9,10,16,17�.

III. COHERENT SIGNAL GENERATION FROM AN
INCOHERENT PUMP

The role of convection �� j� on the coherence properties of
the three-wave interaction, especially as regards the phase-
locking mechanism, was extensively investigated in Ref.
�21�. Our purpose here is to study the influence of dispersion
effects in the strongly incoherent regime of interaction
Ld /Lnl�1. We will show that, in marked contrast with the
kinetic approach, the incoherent pump may lead to the gen-
eration of a highly coherent signal wave. In this section we
adapt the theory developed in the degenerate case �24� to the
nondegenerate configuration considered here. We calculate
explicitly the dispersion relation �spectral gain curve� of the
signal wave in the presence of an incoherent pump. We will
see that the dispersion relation allows us to describe the es-
sential properties of coherence of the parametric generation
process in a general framework.

A. Dispersion relation of the signal wave

We consider the regime of parametric amplification where
a high amplitude incoherent pump A3 amplifies the daughter
waves A1 and A2 from noise fluctuations. In this linear re-
gime of interaction, the incoherent pump is assumed to be
not affected by the daughter waves, 	A3	� 	A1,2	, so that Eq.
�3� may be linearized and solved via a standard Fourier trans-

form technique, Ã3�z ,��= Ã3,0���exp�−i�3�2z�, where

Ã3,0��� is the Fourier transform of the pump amplitude
A3�z=0, t� at the entry of the nonlinear medium. In the fol-
lowing we assume that the three fields obey a Gaussian sta-
tistics, which may be considered as a severe approximation
considering the nonlinear character of the evolution of the
fields. However, the assumption of Gaussian statistics is jus-
tified here because linear dispersive effects dominate nonlin-
ear effects �Ld /Lnl�1� �2�. We also assume that the pump

wave is of zero mean 
A3�z , t��= 
Ã3�z ,���= 
Ã3,0����=0,
and statistically stationary �translational invariant�, so

that its spectrum is �-correlated 
Ã3,0��+���Ã3,0
* ����

= �2��2�������� , ��� representing the pump spectral den-
sity �26�. Under these conditions, Eqs. �1� and �2� may be
linearized and solved by means of the Fourier expansion.
The formal solution to Eq. �2� gives the evolution of the idler
wave

Ã2�z,�� =
i

�2��2�
0

z

dz��
−�

�

d�1 exp�− i��2�2 + �2���z − z���

�Ã3,0��1�Ã1
*�z�,�1 − ��exp�− i�3�1

2z�� .

This expression may be substituted in Eq. �1� to get a closed
equation for the evolution of the signal wave, in terms of the
incoherent pump amplitude,

�zÃ1 + i��1� + �1�2�Ã1

=� �
R

2
d�1d�2�

0

z

dz�
exp�i��
�2��2

�Ã1�z�,� + �2 − �1�Ã3,0��1�Ã3,0
* ��2� , �8�

where �= ��2��1−��+�2��1−��2��z−z��+�3��2
2z�−�1

2z�.
Let us now take an average of this equation over the en-
semble of realizations. The third order correlator in Eq. �8�
can be factorized as


Ã1�z�,� + �2 − �1�Ã3,0��1�Ã3,0
* ��2��

= 
Ã1�z�,� + �2 − �1��
Ã3,0��1�Ã3,0
* ��2�� �9�

by virtue of the factorizability property of statistical Gauss-
ian fields �26�.

Let us remark that the factorization �9� is significant be-
cause we are looking for the generation of a coherent
signal wave. We thus assume that the signal and the pump
fields are not correlated, and, more importantly, we assume
that the average of the signal wave does not vanish,


Ã1�z ,����0. Accordingly, a first order perturbation theory
in �=HNL /HL�1 �see Eqs. �6� and �7�� may be used to get a
closed equation for the evolution of the average of the signal
wave. This contrasts with the usual random phase approxi-
mation approach, where the fields are implicitly assumed to
be incoherent �random phase fields�, so that their average

amplitudes are assumed to vanish, 
Ãj�z ,���=0 �j=1, 2, 3�
�2,5,6,13�. It turns out that a first order perturbation theory is
no longer sufficient to achieve a closure of the moments’
equations, and one must resort to a second order approxima-
tion in �=HNL /HL �2�.

Using the factorization �9� and Eq. �8�, one obtains an
equation governing the evolution of the averaged signal in
terms of the incoherent pump spectrum ���. By means of

the Laplace transform, 
Â1�� ,���=�0
�
Ã1�z ,���exp�−�z�dz,

one may then derive the dispersion relation of the signal in
the presence of the incoherent pump,

� + i�1�2 + i�1� = �
−�

+� �x�
D��x�

dx , �10�

where

D��x� = � + i�3x2 − i�2�x − ��2 − i�2�x − �� . �11�

We pursue the analytical study by assuming that the
initial pump spectrum has a Lorentzian shape, ���
= �
 /�� / �
2+�2�, where 
=�0 /�c �see Eqs. �6� and �7�� rep-
resents the normalized spectral width of ���, which char-
acterizes the degree of coherence of the pump wave. The
explicit dispersion relation ���� cannot be derived from Eqs.
�10� and �11� in the general case. However, to get an insight
into the coherence properties of the signal wave, let us study
the growth rate of its homogenous mode �=0 in the velocity
matched case � j =0 �j=1, 2�. In this limit, the integrand
of Eq. �10� has four poles located at x1

±= ± i
 and x2
±

= ±i� / ��3−�2�, so that integral �10� can be readly calcu-
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lated by the method of residues, yielding �����+ i�
2�−1�2

=−i�
2, where �=�2−�3. Figure 1 illustrates the physical
relevant solution for different values of 
. For 
=0, i.e.,
���=����, we recover the trivial solution Re���=1 of the
coherent problem, the homogenous mode �=0 of the signal
wave is amplified with the maximum growth rate, whatever
the values of the dispersion parameters of the pump and idler
waves ��2 ,�3�. The unexpected result is that the homog-
enous signal mode may be amplified by the incoherent pump
�
�0� with the same growth rate �Re���=1�, provided that
the dispersion coefficients of the pump and idler waves co-
incide ��2=�3�. Note that this efficient amplification of the
homogenous signal mode occurs whatever the value of its
dispersion parameter �1.

We clarified this result by calculating the spectral gain
profile Re������ for any �, in the limit �2=�3. For this
purpose, we remark that one of the four poles of the inte-
grand �10� tends to infinity as �2 tends to �3, so that its
contribution to the integral vanishes in this limit. The three
permanent poles allow us to explicitly calculate the disper-
sion relation of the signal wave in the limit �2=�3,

� = i
�2 − �1

2
�2 − s�2�
 + s


�2

2
− i

�1 + �2

2
� + Q ,

�12�

where

Q = 1 − 1
4 ��1� + 2i�2�s
 − �2�� + is
� + ��1 + �2��2�2

and s=sign�2�2�−�2�.
The dispersion relation �12� extends to the nondegenerate

configuration of the parametric interaction the dispersion
relation obtained in Ref. �24� for the degenerate case
�A1=A2�. Indeed, by setting �1=�2 ,�1=�2, Eq. �12� recovers
the dispersion relation obtained in Ref. �24�. This means that
the condensation process reported in Ref. �24� may also
occur in the nondegenerate configuration provided that
the dispersion parameters of the three waves are matched
��1=�2=�3�. In that case the initially incoherent three waves
evolve towards a coherent regime of interaction, a feature

that we have confirmed by numerical integration of Eqs.
�1�–�3�. However, the conditions required to simultaneously
match the dispersion parameters of the three waves in a re-
alistic experiment are quite artificial, so that we have not
deepen the properties of this three-wave condensation pro-
cess.

B. Analysis of the dispersion relation

Before discussing the influence of group-velocity disper-
sion on the coherence properties of the signal wave, it is
interesting to observe that Eq. �12� allows us to describe the
main characteristic features of the parametric generation pro-
cess in a general framework. Let us thus study the dispersion
relation �12� in various different limits of interest.

1. Coherent pump limit

First of all, let us consider the limit of coherent excitation,
where the pump A3 is assumed to be a continuous wave
�=���� ,
=0�. In this limit we recover the spectral gain
curve of the full coherent problem �see, e.g., Refs. �27,28��

Re������ = 1 − ���1 + �2��2 + ��1 − �2���2/4. �13�

It is apparent from Eq. �13� that Re������ exhibits a maxi-
mum at �=0, so that the homogenous signal mode is pref-
erentially amplified by the coherent pump wave. Let us re-
mark that the gain curve induced by dispersion �Eq. �13�
with �1,2=0� displays a flatter peak at �=0 as compared to
that induced by convection �Eq. �13� with �1,2=0�. This sim-
ply means that the selection of the homogenous mode is
more efficient when the parametric process is ruled by con-
vection rather than dispersion. These aspects have been ex-
tensively investigated in the literature �27,28�. Also note that
in the degenerate configuration �A1=A2, �1=�2, and �1=�2�,
Eq. �13� reduces to Re������=1−�1

2�4, which is the well-
known gain curve of the degenerate parametric amplification
process.

2. Role of convection

It is interesting to observe that the role of convection on
the coherence of the signal wave may also be described by
the dispersion relation �12�. Indeed, in the dispersionless
limit �� j =0�, the spectral gain curve �12� reduces to

���� = − 

	�2	
2

+ 1 − 1
4 ���1 − �2�� + i
�2�2, �14�

where we have omitted the purely imaginary term
i��1+�2�� /2 that does not contribute to the growth rate
Re������. Two physical interesting limits of Eq. �14� deserve
to be commented.

�i� �1=�2: This case is relevant for the description of the
degenerate configuration of the parametric amplification pro-
cess �A1=A2�. The spectral gain curve �14� then reduces to

Re��� = − 
	�1	/2 + 1 + 
2�1
2/4. �15�

In this limit the gain curve becomes completely flat, since
Re��� in �15� does not depend on �. This means that no

FIG. 1. Growth rate of the homogenous signal mode �=0 as a
function of the mismatch of the dispersion parameters of the idler
and pump waves, �=�2−�3. If �2=�3, the homogenous signal
mode is efficiently amplified Re����=0��=1 regardless of the de-
gree of pump incoherence 
. From the upper to the bottom curve,

=0, 
=1, 
=2, 
=4, 
=6.

A. PICOZZI AND P. ASCHIERI PHYSICAL REVIEW E 72, 046606 �2005�

046606-4



coherence enhancement may occur for the signal wave,
regardless of the degree of coherence of the pump �
�.
Nevertheless, the incoherent signal wave may be effi-
ciently amplified when 
	�1	�1, as revealed by Fig. 2,
that illustrates the gain curve Re��� vs 
	�1	 �Eq. �15��.
Indeed, when 
	�1	�1, nonlinear effects dominate linear
convective effects �Lnl�Lcv from Eq. �7��. This means
that the random fluctuations of the pump are too slow to
influence the evolution of the signal wave, which can thus
be efficiently amplified during the propagation, as if the
pump were almost coherent. Conversely, in the limit

	�1	�1�Lnl�Lcv�, pump fluctuations are shown to
quench the amplification of the signal wave, whose para-
metric growth-rate Re��� tends to zero �Fig. 2�. These
properties of coherence of the degenerate parametric am-
plification process were obtained in Ref. �21� from a com-
pletely different, and rather involved, theoretical ap-
proach.

�ii� Another interesting limit of Eq. �14� is �2=0, i.e., the
limit in which the velocities of the pump and idler waves are
matched. In this case the gain curve �14� reduces to

Re��� = 1 − �2�1
2/4. �16�

Let us emphasize that in this limit, the gain curve of the
signal does not depend on the degree of coherence of the
pump 
, which means that, regardless of pump incoherence,
the signal may be efficiently generated. More precisely, the
gain curve �16� coincides with that obtained in the full co-
herent problem �see Eq. �13� for �2=�1,2=0�. Indeed, it has
been shown in Refs. �20,21� that when the velocities of the
idler and pump waves are matched ��2=0�, the signal may be
efficiently amplified with a high degree of coherence, as if
the pump were fully coherent. This may occur owing to a
convection-induced phase-locking mechanism between the
pump and idler waves. We refer the reader to Ref. �21� for an
extensive discussion of this mixed regime of coherent-
incoherent interaction induced by convection.

3. Role of dispersion

Let us now analyze the role of dispersion on the spectral
gain curve of the signal wave. For this purpose, let us neglect
the influence of convection on the parametric instability �i.e.,
Lcv�Lnl , Lcv�Ld�, so that Eq. �12� with �1=�2=0 reduces
to

���� = − 	�2�	
 + 1 − ���1 + �2��2 + 2i	�2�	
�2/4,

�17�

where we have omitted the irrelevant purely imaginary term
i��2−�1��2 /2, that does not affect the gain curve Re������.
Figure 3 shows the spectral gain curve �17� for different
values of the degree of coherence of the pump wave. For

=0, Eq. �17� recovers the gain curve in the limit of coher-
ent excitation �see Eq. �13� for �1,2=0�. The surprising result
is that the spectral gain curve becomes narrower as the co-
herence of the pump is degraded, which entails a preferential
amplification of the homogenous signal mode �=0. This
means that the fluctuations of the pump appear as having a
filtering action on the signal spectrum, which thus unexpect-
edly favor the generation of a coherent signal. Note in Fig. 3
that the spectral gain curve of the coherent problem �
=0�
exhibits a frequency cutoff, ����=0 for 	�	��c

=2/ 	�1+�2	. Interestingly, this frequency cutoff is removed
under incoherent excitation 
�0, so that the preferential
amplification of the homogenous signal mode �=0 is ac-
companied by a weak growing of higher frequencies.

The process of spectral filtering induced by pump inco-
herence has been verified by numerical integration of Eq. �1�.
A very good agreement has been obtained between expres-
sion �17� and the simulations. Figure 4 shows the signal
spectra generated from an incoherent pump �Fig. 4�a�� and a
fully coherent pump �Fig. 4�c��. Figures 4�b�–4�d� show the
respective spectra of the idler wave. Under coherent excita-
tion �
=0�, the degree of coherence of the signal and idler
waves are the same �Figs. 4�c� and 4�d��. Conversely, when
the parametric interaction is driven from an incoherent
pump, the generation of the highly coherent signal takes
place at the detriment of the amplification of an incoherent
idler wave �Fig. 4�b��. In the next section we will see that the

FIG. 2. �Color online� Influence of convection �group-velocity
difference� on the signal growth rate in the degenerate configuration
of the parametric amplification process �from Eq. �15��. When

	�1	�1�Lnl�Lcv� the amplification of the signal is quenched by
the incoherent pump. Conversely, when 
	�1	�1, the regime of
interaction is coherent, i.e., Lnl�Lcv, and the signal may be effi-
ciently amplified.

FIG. 3. Spectral gain curve of the signal wave obtained from Eq.
�17�, for different values of the degree of coherence of the pump
wave 
. The coherence of the generated signal increases as the
coherence of the pump decreases. Dispersion parameters are
�1=0.2,�2=�3=0.1.
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idler spectrum actually evolves towards the spectrum of the
incoherent pump wave.

Let us finally remark that the spectral filtering process
induced by dispersion persists in the presence of convection
between the interacting waves. This is clearly illustrated in
Fig. 5�a�, that shows the theoretical spectral gain curve �Eq.
�12�� under coherent �
=0� and incoherent �
�0� excitation
in the presence of convection. The unexpected result is that
convection leads to a significant spectral shift of the ampli-
fied signal wave. This result is confirmed by the numerical
simulations of Eqs. �1�–�3�, as shown in Fig. 5�b�, that illus-
trates the averaged signal spectrum at the propagation dis-
tance z=10. Note that the signal spectrum in �b� is

well approximated by 
	Ã1	2�z0 ,���� exp�2 Re������z0�,
confirming the good agreement between Eq. �12� and the
simulations. The spectral shift of the amplified signal wave is
remarkable because it originates in the noise fluctuations of
the pump wave via the combined effects of dispersion and
convection. This noise-induced spectral shift is expected to
occur in any realistic experimental configuration, as will be
discussed in Sec. V.

IV. PUMP-IDLER PHASE-LOCKING INDUCED BY
DISPERSION

In the preceding section we have shown that, owing to
group-velocity dispersion, the coherence acquired by the sig-
nal wave may increase, as the coherence of the pump wave
decreases. A similar phenomenon of coherence enhancement
induced by pump incoherence has recently been reported in

the degenerate configuration of the parametric interaction
�24�. We have thus shown that this intriguing result may also
take place in the nondegenerate configuration, provided that
the dispersion parameter of the pump matches the dispersion
parameter of one of the daughter waves �Figs. 3 and 4�.
However, we will show in this section that, in contrast with
the degenerate case where both the pump and signal waves
evolve towards a coherent state, in the nondegenerate case
the system evolves towards a mixed regime of coherent-
incoherent interaction.

This mixed regime of interaction is illustrated in Fig. 6,
that shows a typical evolution of the spectra of the fields in
the incoherent regime of interaction �Ld /Lnl�1�. The inco-
herent pump amplifies the signal and idler waves from noise
fluctuations at the entry of the nonlinear medium z=0 �first
row of Fig. 6�. As described by the gain curve �17�, the
signal wave rapidly evolves towards a highly coherent state
�Fig. 6, second row, z=2�. Conversely, the idler wave re-
mains incoherent, and quite remarkably, its spectrum tends to
duplicate the spectrum of the pump wave, as illustrated in
Fig. 6 �third and fourth row, z=9�. This indicates that the
pump and idler waves tend to become mutually coherent
during the process of parametric generation, so that their
random phases result to be locked with each other. In this

FIG. 4. �Color online� Numerical simulations of Eqs. �1�–�3�
confirming the process of signal coherence enhancement induced by
pump incoherence predicted through Eq. �17� �see Fig. 3�. Spectrum
of the signal wave at the propagation distance z=10, when it is
generated from an incoherent pump ��a� 
=30�, and a fully coher-
ent pump ��c� 
=0�. �b�–�d� show the respective idler spectra ��b�

=30, �d� 
=0�. Let us remark that the signal and idler spectra
generated from a coherent pump are almost phase conjugated with
each other. Note the change of the limits of the frequency window
in �b�. An average over 20 numerical simulations has been taken
��1=0.2,�2=�3=0.1�.

FIG. 5. �Color online� �a� Theoretical spectral gain curve
Re������ of the signal wave in the presence of convection
��2=0.4,�1=0�, under coherent �
=0� and incoherent �
=30� ex-
citation �from Eq. �12��. �b� Numerical simulations of Eqs. �1�–�3�
showing the averaged spectrum of the signal wave 
	Ã1	2�z0 ,��� at
the propagation distance z0=10. The spectral filtering process in-
duced by dispersion persists in the presence of convection. Note
that the simulations confirm the spectral shift of the signal induced
by pump incoherence. An average over 15 numerical simulations
has been taken to obtain the signal spectrum shown in �b�. Param-
eters are �3=�2=0.1,�1=0.2.
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way, the idler phase cancels the fast phase fluctuations of the
pump wave, which in turn allows the signal to evolve to-
wards a coherent state. This section is devoted to demon-
strate this result rigorously by calculating the degree of mu-
tual coherence between the incoherent pump and the
incoherent idler waves during their propagation in the non-
linear medium.

A. Pump-idler correlation function

We calculate the degree of mutual coherence between the
pump and idler waves during their linear regime of paramet-
ric interaction,

�2,3�z� =
	�0�z�	


	A3�z,t�	2�
	A2�z,t�	2�
, �18�

where �0�z�= 
A3�z , t�A2
*�z , t�� is the mutual coherence func-

tion. For the sake of simplicity and clarity, we assume that
the influence of convection between the interacting waves
may be neglected, i.e., Lcv /Lnl�1, Lcv /Ld�1. Writing Eqs.
�1�–�3� in Fourier space, and exploiting the formal solution
of the signal wave

Ã1�z,�� = �i/2���
0

z

dz�� d�1 exp�− i�1�2�z − z���

�A3�z�,�1�A2
*�z�,�1 − �� ,

one readily obtains the following equation for the evolution

of the pump-idler correlator J2= 
Ã3�z ,�0�Ã2
*�z ,���:

�

�z
J2 = i��2�2 − �3�0

2�J2 +
1

�2��4 � �
R

2
d�1d�2

��
0

z

dz� exp�− i�1��2 − ��2�z − z���J4, �19�

where J4 represents the following fourth-order correlator,

J4 = 
Ã3�z,�0�Ã3
*�z,�2�Ã3�z�,�1�Ã2

*�z�,�1 − �2 + ��� .

Let us recall that the pump and idler waves are assumed to

obey a stationary statistics, so that J2= �2��2�̃�z ,�����
−�0�, where �̃�z ,��=���z ,��exp�−i���d� is the Fourier
transform of the cross-correlation function ��z ,��
= 
A3�z , t+��A2

*�z , t��. To get a closed equation for the
second-order correlator J2, we make use of the property of
factorizability of stochastic Gaussian fields. We may thus
factorize J4 as a sum of products of second order correlators,

J4

�2��4 = ����̃�z�,�1����0 − �2���� − �2� + ��1��̃�z�,��

� exp�i�3��1
2 − �2��z − z������2 − �1���� − �0� ,

where we exploited the linear dispersive evolution

of the Fourier-pump components Ã3�z ,��
= Ã3�z� ,��exp�−i�3�2�z−z���. We substitute the expansion
of J4 into Eq. �19�, which gives the following equation gov-
erning the evolution of the cross-spectral function,

�

�z
�̃�z,�� = i��2�̃�z,�� + ����

0

z

dz�� d�1�̃�z�,�1� + � ,

�20�

where �=�2−�3, and

� = �
0

z

�̃�z�,��exp�i���z − z��� , �21�

with ��=−��1+�3��2+ ��1−�3�
2+2i�1�
. This expres-
sion of � has been obtained by calculating the integral
over �1 in �19� by the method of residues ���1�
=
 / ���
2+�1

2���.
Let us study the evolution of the cross-spectral function

�̃�z ,�� �Eq. �20�� through the analysis of the growth-rate 	,
of the cross correlation between the pump and idler fields.
For this purpose, we apply the Laplace transform to Eq. �20�,
�̂�	 ,��=�0

z�̃�z ,��exp�−	z�dz, which allows us to derive
the following expression for the cross-correlation growth-
rate 	,

FIG. 6. �Color online� Numerical simulation of Eqs. �1�–�3�
�without convection �1=�2=0� that illustrates the evolution of the
spectra of the three waves during the propagation. This simulation
shows the formation of the mixed regime of coherent-incoherent
interaction. The incoherent pump amplifies the signal and idler
waves from small amplitude noise fluctuations �first row, z=0�. The
signal evolves towards a coherent state �second row, z=2�. The idler
spectrum evolves towards the pump spectrum �third row, z=9�, as
illustrated through a zoom of the frequency window in the fourth
row �z=9�. The mixed regime of coherent-incoherent interaction
persists in the presence of significant pump depletion �fifth row, z
=16�. Parameters are �1=0.2,�2=�3=0.1,
=80.
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	 = �
−�

+� ���

	 − i��2 −
1

	 − i��

d� . �22�

Note that the last term in the denominator, 1 / �	− i���,
comes from the function � in Eq. �20�. In the Appendix we
show that this term has a negligible contribution to the
growth-rate 	 provided that �i� �1��3, �ii� the interaction
takes place in the full incoherent regime Ld,j /Lnl
=1/
2	� j	�1 �j=1, 3� �see the Appendix�. Neglecting this
term, the integral �22� may easily be calculated by the
method of residues, which gives 	2=1−
� / i	− i�
2	. The
analytical solutions to this algebraic equation are quite in-
volved, and we do not report them explicitly here. We illus-
trate the physical meaningful solution in Fig. 7, that shows
the growth-rate Re�	� vs the parameter 
	�	. It clearly
shows that, regardless of the degree of pump incoherence 
,
the growth rate of the correlation between the pump and idler
waves is maximum �	=1� when the dispersion parameters
�3 and �2 are matched ��=0�. This indicates that in this
regime ��2=�3�, the idler wave adapts its phase to the ran-
dom phase of the pump wave, as we previously anticipated
from the numerical simulations �Fig. 6�. Conversely, for a
nonvanishing value of �, the correlation growth-rate 	 de-
creases monotonically as the pump becomes incoherent �

increases�. In other terms, the phase-locking between the
pump and idler waves becomes less efficient as �, or 
, in-
crease.

As a result, in the full incoherent regime of interaction
Ld /Lnl�1, and in the limit �1��2=�3, the correlation be-
tween the pump and idler waves grows efficiently during
their propagation. This result becomes apparent through the
analysis of Eq. �20� in the limits �=0, and �=0 �i.e., ne-
glecting 1/ �	− i��� in Eq. �22�, see the Appendix�. In these
limits, one may integrate Eq. �20� over �, to get the follow-
ing expression for the evolution of the mutual coherence
function �0�z�=��z ,�=0�= 
A3�t ,z�A2

*�t ,z��=���z ,��d�,

dzz�0�z� − �0�z� = 0. �23�

Also note that dz�0=�0
z�0�z��dz� from Eq. �20�, so that the

growth of the mutual coherence occurs with a vanishing

slope at z=0, dz�0	z=0=0. Accordingly, the mutual coher-
ence function solving �23� reads

�0�z� = �00 cosh�z� , �24�

where �00= 
A3�z=0, t�A2
*�z=0, t�� corresponds to the initial

value of the mutual coherence function.

B. Degree of mutual coherence

To determine the evolution of the degree of mutual coher-
ence between the pump and idler waves we must normalize
their mutual coherence function �0�z� by their respective av-
erage intensities �see Eq. �18��. For this purpose, we calcu-
late the evolution of the second-order moment I2�z�
= 
A2�z , t�A2

*�z , t�� by following the same procedure as in Sec.
IV A. More precisely, under the assumptions Ld,j /Lnl
=1/
� j �1 �j=1, 2�, and �2=�3, one obtains the following
equation governing the evolution of the averaged idler inten-
sity:

dzI2 = �0�z��
0

z

�0�z��dz� + c.c., �25�

where c.c. denotes the complex conjugate. Exploiting the
expression of �0�z� given in Eq. �24�, one may readily inte-
grate Eq. �25�, to get the evolution of the idler intensity,
I2�z�= I2,0+ 	�00	2�cosh�2z�−1� /2, where I2,0= I2�z=0� is the
initial intensity noise of the idler wave. In this way, the evo-
lution of the degree of mutual coherence between the pump
and idler waves in their linear regime �
	A3	2�z , t��=1� of
parametric interaction reads

�2,3�z� =
	�00	cosh�z�

I2,0 +
1

2
	�00	2�cosh�2z� − 1�

. �26�

We remark that the function �2,3�z� exhibits a monotonic
growth, and tends asymptotically towards the unity value,
�2,3→1, as illustrated in Fig. 8 �dashed line�. This explicitly
shows that, owing to their matched dispersion parameters,
the pump and idler waves become mutually coherent during
their parametric interaction.

We recall that the degree of mutual coherence �26� has
been derived under the assumptions that the interaction takes
place in the full incoherent regime, 
2	� j	�1 �i.e.,
Ld /Lnl�1� and in the limit �1��2=�3. It is interesting to
observe that, although �2,3�z� does not depend on the disper-
sion parameters � j and the degree of pump incoherence

 , �2,3�z� describes accurately the evolution of the degree of
mutual coherence between the pump and idler waves. This is
well illustrated in Figs. 8�a� and 8�b�, that show a quantita-
tive agreement of Eq. �26� with the numerical simulations of
Eqs. �1�–�3� for a wide range of values of � j and 
, provided
that Ld /Lnl�1. However, when nonlinear and dispersion ef-
fects become of the same order Ld /Lnl�1, the phase-locking
mechanism does not occur efficiently and the emergence of
mutual coherence between the pump and idler waves is only
partial �Fig. 8�c��.

As previously anticipated through Fig. 6, the strong cor-
relation between the incoherent pump and idler waves allows

FIG. 7. �Color online� Influence of the mismatch between the
pump and idler dispersion ��=�3−�2� on the growth rate 	 of their
correlation function during the parametric amplification process.
When 
	�	�1, the incoherent idler wave becomes mutually co-
herent to the incoherent pump wave.
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the signal to evolve towards a highly coherent state. As a
result, the pump and signal waves should be uncorrelated, a
feature which is confirmed by the numerical simulations of
Eqs. �1�–�3�. Figure 9 illustrates the evolution of the degree
of mutual coherence between the pump and signal waves
�1,3�z�= 	
A3�z , t�A1

*�z , t��	 / �
	A3�z , t�	2�
	A1�z , t�	2��1/2. As ex-
pected, the two waves remain uncorrelated during their
propagation �1,3�z��0.1, which confirms, a posteriori, the
assumption employed to factorize the pump-idler correlator
�see Eq. �9��.

V. EXPERIMENTAL CONFIGURATION

In order to motivate the experimental confirmation of the
process of signal coherence enhancement induced by pump
incoherence reported in Sec. III, let us briefly comment the
feasibility of such an experiment in noncentrosymmetric op-
tical crystals with quadratic nonlinearity. Thanks to the large
variety of nonlinear optical crystals, this system seems to be
the most promising. We recall that the experiment aimed at
observing the generation of a coherent signal from an inco-
herent pump imposes severe constraints on the dispersion
properties of the three interacting waves. In the following we

illustrate how the dispersion parameters kj�, as well as the
group velocities v j, may easily be tuned by exploiting the
dispersion induced by an optical waveguide. Indeed, it is
well known that the dispersion properties of a guided wave
can be tailored by using an appropriate waveguide index
profile. This technique has been proposed, for example, with
triply clad �W� fibers to cancel the material dispersion with
the waveguide dispersion �29�.

In the following we illustrate this technique by consider-
ing the concrete example of a lithium niobate �LiNbO3�
channel waveguide. The choice of the LiNbO3 crystal is mo-
tivated by the fact that it is of considerable interest for non-
linear optical application due to its large quadratic nonlinear
optical coefficients that can be engineered through the qua-
siphase matched gratings, and the possibility to form low
losses optical waveguides by the proton exchange �PE� tech-
nique �30�. Which is of main interest for the present purpose
concerns the nondegenerate configuration of the parametric
interaction and the possibility to match the dispersion param-
eters of the pump and idler waves ��2=�3�. It is shown here
that this matching can be achieved by using a “mexican-hat”
shape of the index profile along the width direction of the
waveguide �Fig. 10�, and with a classical 3.3 �m Gaussian
index profile along the depth direction. From a technological
point of view, no major difficulty exists to realize such an
index profile, since the waveguide fabrication is based on the
well known and widely used PE technique. Nevertheless,
two-step fabrication process with appropriate lithographic
masks will be necessary to realize the required index profile.
The first step will consist of the fabrication of a classical
straight waveguide by PE using a single strip of 5 �m aper-
ture mask. Then, a second PE with a double strip mask of
1 �m aperture will create the side lobes of the index profile.

Using the Sellmeier equation �31� for the index substrate,
and taking into account the realistic index profile, we calcu-
lated the dispersion coefficient k�, and group velocity 1/v, as
a function of the wavelength � for the considered waveguide

FIG. 8. �Color online� Theoretical �dashed line, from Eq. �26��
and numerical �continuous line� evolution of the degree of mutual
coherence between the pump and idler waves during their paramet-
ric interaction. When the interaction takes place in the full incoher-
ent regime Ld /Lnl�1, the idler wave becomes phase correlated to
the incoherent pump, �2,3→1, in agreement with the theory ��a�
and �b��. Conversely, when linear dispersive effects are comparable
to nonlinear effects, the phase-locking mechanism is no longer ef-
ficient �c�. Parameters are �a� �1=0.2,�2=�3=0.1,
=102, so that
Ld /Lnl=10−3�1, �b� �1=2�10−2 ,�2=�3=10−2 ,
=102, so that
Ld /Lnl=10−2�1, �c� �1=2�10−3 ,�2=�3=10−3 ,
=50, so that
Ld /Lnl=2.5. The numerical values of I2,0�=2�10−10� and
	�00	�=5.6�10−7� used to plot Eq. �26� have been determined from
the initial random fields generated in the numerical simulations. The
simulations have been performed in the absence of convection
��1=�2=0�. An average over 30 numerical realizations has been
taken to obtain the continuous curves �a�, �b�, �c�.

FIG. 9. �Color online� Numerical simulation that shows the evo-
lution of the mutual coherence �1,3�z� between the incoherent pump
and the generated signal wave during their parametric interaction.
As described by the phase-locking mechanism, the signal evolves
towards a coherent state which is uncorrelated with the pump
wave �1,3�0.1. The parameters are the same as in Fig. 8�b�
��1=2�10−2 ,�2=�3=10−2 ,
=102 ,�1=�2=0�. An average over
30 numerical realizations has been taken.
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�see Figs. 11�a� and 11�b��. One can note the possibility
to have �k2�=k3�=0.172 ps2 /m� if pump wavelength is
�3=1.3 �m and idler wavelength is �2=2.973 �m. Note that
for these wavelengths the velocities of the pump and idler
waves are almost matched, 1 /v3−1/v2�−1.7 m/s, so as
to avoid the detrimental influence of convective effects
between the two incoherent waves �see Sec. III B�.
Energy conservation ��3=�2+�1� imposes the signal
wavelength �1=2.31 �m, so that k1�=−0.130 ps2 /m, and
1/v1=7.32�103 ps/m. The quasi-phase-matching condition
�k3=k1+k2+2� /�� may thus be satisfied with a grating pitch
of �=26.38 �m.

As discussed in Secs. III and IV, the phenomenon of co-
herence enhancement induced by pump incoherence occurs
efficiently in the incoherent regime of interaction character-
ized by Ld /Lnl�1 �Eq. �6��. Note that this inequality may be
satisfied by decreasing the average intensity of the pump
wave e0

2= 
	A3	2�, or its time correlation �c. We illustrate in
Fig. 12 a typical numerical simulation of Eqs. �1�–�3� imple-
mented with the previously specified parameters. Figure 12
represents the spectrum of the signal wave generated from a
coherent �a�, and an incoherent pump �b�, respectively. In
this example we considered a pump wave characterized by
an averaged intensity e0

2=0.2 MW/cm2, and a spectral width
��=16 THz��c=1/����20 fs�, so that Ld,3 /Lnl�0.1 and
Lcv,2 /Lnl�0.4. Let us stress that the coherence of the gener-
ated signal is approximately two orders of magnitude higher
than that of the pump wave �Fig. 12�b��, while the coherence
of the idler wave is comparable to the pump wave, in agree-
ment with the theory �Sec. IV�. It is important to remark that
the coherence acquired by the signal when it is generated
from an incoherent pump �b�, is higher that that acquired in
the presence of a fully coherent pump �a�. Finally note that
the incoherent pump induces a spectral shift of the generated
signal wave, as predicted from the theory �see Fig. 5 in Sec.
III B�.

VI. CONCLUSION

In summary, we studied the influence of group-velocity
dispersion on the coherence properties of the parametric
three-wave interaction driven from an incoherent pump
wave. We showed the existence of a dispersion-induced

FIG. 10. Waveguide index profile in the width direction.

FIG. 11. Calculated dispersion coefficient k� �a� and group-
velocity 1/vg �b� as a function of the wavelength � for the consid-
ered quadratic nonlinear optical crystal �see Sec. V�.

FIG. 12. �Color online� Numerical simulations showing the
spectrum of the signal wave at the propagation distance z=6Lnl, in
the presence of a coherent �a�, and incoherent �b�, pump. The pa-
rameters are determined from the realistic experimental conditions
discussed in the text ��0=9 GHz�. The incoherent pump leads to a
spectral filtering of the generated signal, as described by the theory
�Sec. III B�. Note also that the incoherent pump induces a spectral
shift of the generated signal wave, in agreement with the theoretical
expression �12� �see Fig. 5�.
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phase-locking mechanism in which the incoherence of the
pump may be absorbed by the idler wave, allowing the signal
to grow efficiently with a high degree of coherence. More
precisely, we showed that owing to their matched dispersion
parameters, the incoherent idler wave becomes mutually co-
herent to the pump during its parametric amplification pro-
cess. We calculated explicitly the degree of mutual coherence
between the incoherent pump and idler waves, and showed
that they become fully correlated in the regime of incoherent
wave interaction, in complete agreement with the theory. In
this way, we generalized the phase-locking mechanism in-
duced by group-velocity difference �convection� between the
three waves �20,21�. However, contrary to the convection-
induced phase-locking mechanism, we showed that disper-
sion is responsible for an intriguing spectral filtering process,
in which the fluctuations of the incoherent pump appear as
having a filtering action on the spectral gain curve of the
signal wave. It turns out that the coherence acquired by the
signal in the presence of an incoherent pump, is higher than
that acquired in the presence of a fully coherent pump. To
motivate the experimental study of this phenomenon in the
context of nonlinear optics, we characterized the dispersion
properties of an actual quadratic nonlinear crystal in its
guided-wave configuration. According to this preliminary
theoretical study, we may expect to observe the process of
coherence enhancement induced by pump noise fluctuations
in a near future, thanks to currently available nonlinear opti-
cal crystals.

Let us emphasize that the mixed regime of coherent-
incoherent interaction induced by dispersion could not be
described by the usual kinetic theory of the incoherent three-
wave interaction, because the random phase approximation
approach implicitly assumes the interacting fields to be inco-
herent, as well as mutually incoherent �2,5,6,13�. It would be
interesting to extend the kinetic wave theory by taking into
account phase-correlations effects between the incoherent
fields. This important issue is presently under investigation.

Although we restricted our theory to the three-wave inter-
action in quadratic nonlinear media, it may easily be ex-
tended to the four-wave interaction in cubic nonlinear media.
Beside the context of optics, the present work is also relevant
to many branches of nonlinear wave physics, owing to the
universality of the parametric wave mixing process. For in-
stance, our results are of potential interest to the area of finite

temperature atomic-molecular Bose-Einstein condensates
�32�, which may be described classically in terms of incoher-
ent matter waves �33�. More generally, the experimental veri-
fications of our predictions would be of interest for the fun-
damental study of self-organization processes in nonlinear
stochastic environments �34�, such as, e.g., the recently stud-
ied systems of incoherent solitons in inertial nonlinear media
�9,35�.

APPENDIX

In the strong incoherent regime of interaction, 
� j
2�1

�j=1, 2, 3�, i.e., Ld,j /Lnl�1, we may assume 	��	�1 if
�1��3. This allows us to treat perturbatively the last term in
the denominator of Eq. �22�, i.e., 1 / �	− i���. Accordingly,
the integral equation for the cross-correlation growth-rate
�22� takes the simplified form

	2 = 1 −
i

	
K , �A1�

K = �
−�

+� ���
��

d� , �A2�

where we have implicitly assumed that �1��2=�3, so as to
take advantage of the dispersion-induced phase-locking
mechanism between A2 and A3. Assuming the spectrum of
the pump to be Lorentzian, the integral �A2� may easily be
calculated by the method of the residues, which gives

K =
1

4�1
2 for
�1 − �3

�1 + �3
� 0

and

K =
1

4�1
2 −
1

�1
2��1 − �3

�1 + �3
− 1�2 for

�1 − �3

�1 + �3
� 0.

It results that in the limit 
� j
2�1 �j=1, 2�, the integral K in

�A1� has a negligible contribution, 	K	�1, so that the cross-
correlation growth rate given in �A1� reduces to 	= ±1, in
agreement with Eq. �23� that governs the evolution of the
mutual coherence function.
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